Yong Han

Staff
Ph.D.
Assistant Scientist
Condensed Matter

307D Wilhelm Hall
y27h [at] iastate [dot] edu
515-294-9927


Degrees

  • Ph.D., Materials Science and Engineering, University of Utah (2007)
  • M.S., Physics, University of Utah (2004)

Education and Employment

  • Assistant Scientist, Department of Physics and Astronomy, Iowa State University; Associate, Ames Laboratory - U. S. Department of Energy (2012-Present)
  • Assistant Scientist, Institute for Physical Research and Technology, Iowa State University; Associate, Ames Laboratory - U. S. Department of Energy (2011-2012)
  • Visiting Scientist, Beijing Computational Science Research Center (April-August 2011)
  • Postdoctoral Research Associate, Institute for Physical Research and Technology, Iowa State University; Associate, Ames Laboratory - U. S. Department of Energy (2007-2011)
  • Graduate Research Assistant, Department of Materials Science and Engineering, University of Utah (2003-2007)
  • Graduate Teaching Assistant, Department of Physics, University of Utah (2001-2003)

Current Research Interests

  • Computational simulation and physical modeling from atomic to mesoscopic scales; thermodynamic and kinetic properties of surfaces and interfaces of materials; growth mechanisms of solid nanofilms; self-assembly, self-organization, and quantum effects of various nanostructures; nanofilms, nanowires, monatomic chains, nanotubes, nanoclusters, graphene; chemical adsorption on material surface; electric and magnetic properties of surface-related nanostructures; electronic structure and energy band analyses for atomic-scale systems, etc.
  • First-principles (or ab initio) density functional theory; kinetic Monte Carlo simulation; molecular dynamic simulation; atomistic and coarse-grained models; electron-gas and jellium models; climbing elastic nudged band method; empirical potentials; step flow and step dynamics; diffusion rate equation analysis; continuum modeling, etc.
  • Some of my current theoretical and computational research projects are often closely related to experimental observations, e.g., frequently from scanning tunneling microscope experimental technology. These experimental observations are generally from our collaboration groups, as well as from published literature.

Selected Publications

  1. Analytic formulations for one-dimensional decay of rectangular homoepitaxial islands during coarsening on anisotropic fcc (110) surfaces, C.-J. Wang, Y. Han, H. Walen, S. M. Russell, P. A. Thiel, and J. W. Evans, Phys. Rev. B 88, 155434 (2013).
  2. Anisotropic coarsening: one-dimensional decay of Ag islands on Ag(110), Y. Han, S. M. Russell, A. R. Layson, H. Walen, C. D. Yuen, P. A. Thiel, and J. W. Evans, Phys. Rev. B 87, 155420 (2013).
  3. Atomistic modeling of the directed-assembly of bimetallic Pt-Ru nanoclusters on Ru(0001)-supported monolayer graphene, Y. Han A. K. Engstfeld, R. J. Behm, and J. W. Evans, J. Chem. Phys. 138, 134703 (2013).
  4. Atomistic modeling of Ru nanocluster formation on graphene/Ru(0001): Thermodynamically versus kinetically directed-assembly, Y. Han A. K. Engstfeld, C.-Z. Wang, L. D. Roelofs, R. J. Behm, and J. W. Evans, MRS Proc. 1498, mrsf12-1498-s05-29 (2013).
  5. Interplay between quantum size effect and strain effect on growth of nanoscale metal thin films, M. Liu, Y. Han, L. Tang, J.-F. Jia, Q.-K. Xue, and F. Liu, Phys. Rev. B 86, 125427 (2012).
  6. Directed assembly of Ru nanoclusters on Ru(0001)-supported graphene: STM studies and atomistic modeling, A. K. Engstfeld, H. E. Hoster, R. J. Behm, L. D. Roelofs, X. Liu, C.-Z. Wang, Y. Han*(corresponding author), and J. W. Evans, Phys. Rev. B 86, 085442 (2012).
  7. Formation of a novel ordered Ni3Al surface structure by codeposition on NiAl(110), Y. Han, B. Ünal, and J. W. Evans, Phys. Rev. Lett. 108, 216102 (2012).
  8. Atomistic modeling of alloy self-growth by vapor deposition: Ni and Al on NiAl(110), Y. Han and J. W. Evans, MRS Proc. 1411, mrsf11-1411-ee10-03 (2012).
  9. Formation of irregular Al islands by room-temperature deposition on NiAl(110), D. Jing, Y. Han, B. Ünal, J. W. Evans, and P. A. Thiel, MRS Proc. 1318, mrsf10-1318-uu02-07 (2011).
  10. Far-from-equilibrium film growth on alloy surfaces: Ni and Al on NiAl(110), Y. Han, D. Jing, B. Ünal, P. A. Thiel, and J. W. Evans, Phys. Rev. B 84, 113414 (2011).
  11. Temperature-dependent growth shapes of Ni nanoclusters on NiAl(110), Y. Han, B. Ünal, D. Jing, P. A. Thiel, and J. W. Evans, J. Chem. Phys. 135, 084706 (2011).
  12. Self-assembly of metal nanostructures on binary alloy surfaces, T. Duguet, Y. Han, C. Yuen, D. Jing, B. Ünal, J. W. Evans, and P. A. Thiel, Proc. Nat. Acad. Sci. 108, 989 (2011).
  13. Variation of growth morphology with chemical composition of terraces: Ag on a twofold surface of a decagonal Al-Cu-Co quasicrystal, T. Duguet, B. Ünal, Y. Han, J. W. Evans, J. Ledieu, C. J. Jenks, J. M. Dubois, V. Fournée, and P. A. Thiel, Phys. Rev. B 82, 224204 (2010).
  14. Shell structure and phase relations in electronic properties of metal nanowires from an electron-gas model, Y. Han and D.-J. Liu, Phys. Rev. B 82, 125420 (2010).
  15. From initial to late stages of epitaxial thin film growth: STM analysis and atomistic or coarse-grained modeling, J. W. Evans, Y. Han, B. Ünal, M. Li, K. J. Caspersen, D. Jing, A. R. Layson, C. R. Stoldt, T. Duguet, and P. A. Thiel, AIP Conf. Proc. 1270, 26 (2010).
  16. Nanoscale "quantum" islands on metal substrates: microscopy studies and electronic structure analyses, Y. Han, B. Ünal, D. Jing, P. A. Thiel, J. W. Evans, and D.-J. Liu, Materials 3, 3965 (2010).
  17. Comment on "Capture-zone scaling in island nucleation: Universal fluctuation behavior", M. Li, Y. Han, and J. W. Evans, Phys. Rev. Lett. 104, 149601 (2010).
  18. Formation and coarsening of Ag(110) bilayer islands on NiAl(110): STM analysis and atomistic lattice-gas modeling, Y. Han, B. Ünal, D. Jing, F. Qin, C. J. Jenks, D.-J. Liu, P. A. Thiel, and J. W. Evans, Phys. Rev. B 81, 115462 (2010).
  19. Quantum size effects on metal nanofilms, Y. Han, Modern Physics 21(4), 3 (2009).
  20. Quantum size effects in metal nanofilms: comparison of an electron-gas model and density functional theory calculations, Y. Han and D.-J. Liu, Phys. Rev. B 80, 155404 (2009).
  21. Formation of complex wedding-cake morphologies during homoepitaxial film growth of Ag on Ag(111): atomistic, step-dynamics, and continuum modeling, M. Li, Y. Han, P. A. Thiel, and J. W. Evans, J. Phys.: Condens. Matt. 21, 084216 (2009).
  22. Single crystal growth via a grain rotation mechanism within amorphous matrix, J. Fang, P. Kong, B. Ding, X. Song, Y. Han, H. Hahn, and H. Gleiter, Appl. Phys. Lett. 93, 153115 (2008).
  23. A jellium model analysis on quantum growth of metal nanowires and nanomesas, Y. Han, Front. Phys. 3, 436 (2008).
  24. Quantum stabilities and growth modes of thin metal films: Unsupported and NiAl-supported Ag(110) and Ag(100), Y. Han, J. W. Evans, and D.-J. Liu, Surf. Sci. 602, 2532 (2008).
  25. Flat-surface, step-edge, facet-facet, and facet-step diffusion barriers in growth of a Pb mesa, Y. Han, G.-H. Lu, B.-J. Lee, and F. Liu, Surf. Sci. 602, 2284 (2008).
  26. How a silver dendritic mesocrystal converts to a single crystal, J. Fang, B. Ding, X. Song, and Y. Han, Appl. Phys. Lett. 92, 173120 (2008).
  27. Kinetics of facile bilayer island formation at low temperature: Ag/NiAl(110), Y. Han, B. Unal, F. Qin, D. Jing, C. J. Jenks, D.-J. Liu, P. A. Thiel, and J. W. Evans, Phys. Rev. Lett. 100, 116105 (2008).
  28. Kinetics of mesa overlayer growth: climbing of adatoms onto the mesa top, Y. Han, F. Liu, S.-C. Li, J.-F. Jia, Q.-K. Xue, and B.-J. Lee, Appl. Phys. Lett. 92, 021909 (2008).
  29. Coulomb sink effect on coarsening of metal nanostructures on surfaces, Y. Han and F. Liu, Front. Phys. 3, 41 (2008).
  30. Quantum modulation of island nucleation on top of a metal nanomesa, Y. Han, M. Hupalo, M. C. Tringides, and F. Liu, Surf. Sci. 602, 62 (2008).
  31. Scanning tunneling microscopy and density functional theory study of initial bilayer growth of Ag films on NiAl(110), B. Unal, F. Qin, Y. Han, D.-J. Liu, D. Jing, A. R. Layson, C. J. Jenks, J. W. Evans, and P. A. Thiel, Phys. Rev. B 76, 195410 (2007).
  32. Quantum size effect on adatom surface diffusion, L.-Y. Ma, L. Tang, Z.-L. Guan, K. He, K. An, X.-C. Ma, J.-F. Jia, Q.-K. Xue, Y. Han, S. Huang, and F. Liu, Phys. Rev. Lett. 97, 266102 (2006).
  33. Determination of the Ehrlich-Schwoebel barrier in epitaxial growth of thin films, S.-C. Li, Y. Han, J.-F. Jia, Q.-K. Xue, and F. Liu, Phys. Rev. B 74, 195428 (2006).
  34. Fabricating artificial nano-wells with tunable size and shape by using scanning tunneling microscopy, S.-C. Li, J.-F. Jia, X. Ma and Q.-K. Xue, Y. Han, and F. Liu, Appl. Phys. Lett. 89, 123111 (2006).
  35. Coulomb sink: a novel Coulomb effect on coarsening of metal nanoclusters on semiconductor surfaces, Y. Han, J. Y. Zhu, F. Liu, S.-C. Li, J.-F. Jia, Y.-F. Zhang, and Q.-K. Xue, Phys. Rev. Lett. 93, 106102 (2004).
  36. Geometric constant defining shape transitions of carbon nanotubes under pressure, J. Zang, A. Treibergs, Y. Han, and F. Liu, Phys. Rev. Lett. 92, 105501 (2004).